Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc.(IT) (Sem.-4) COMPUTER ORIENTED NUMERICAL METHODS

Subject Code: BS-208 Paper ID: [B0416]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and a student has to attempt any FOUR questions.

SECTION-A

1. Write briefly:

- (a) Add .6434E3 to .4845E3.
- (b) What do you understand by the term pivot? Explain briefly different types of pivoting.
- (c) Check whether the system 1.01x + 2y = 2.01, x + 2y = 2 is ill conditioned or not?
- (d) Explain briefly the method of false position to find root of an equation.
- (e) Some experimental values of x and y are given below, if $y = a_0 + a_1x$, find approximate values of a_0 and a_1 .

x: 0 2 5 7 y: -1 5 12 20

- (f) Write formula for the Runge-Kutte method of order four.
- (g) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Simpson's Rule.
- (h) If f(0) = 8, f(1) = 68 and f(5) = 123, construct a divided difference table.
- (i) Write algorithm to find order of a polynomial.

(i) Write algorithm to perform division of two normalized floating-point numbers.

SECTION-B

- 2. (a) Formulate an algorithm to find the largest of the find real numbers represented by variables a, b, c, d and e.
 - (b) Discuss the various types of errors that occur while performing numerical computations. What measures can be taken to improve the accuracy in the numerical computations?
- (a) Calculate a root of the equation $x^4 x 13 = 0$ correct to four decimal places. 3.
 - (b) Solve by using Gauss-Seidal method

$$10x + 2y + z = 9,$$

$$2x + 20y - 2z = -44,$$

$$-2x + 3y + 10z = 22.$$

(a) Use Lagrange's interpolation formula to find the value of y when x = 10, if the 4. following values of x and y are given:

- 5. (a) Write an algorithm to fit a regression line of Y on X by least squares.
 - (b) Explain briefly Taylor Series representation to approximate a function by a polynomial.
- Apply Euler's method to solve $\frac{dy}{dx} = x + y$, y(0) = 0, choosing the step length h = 0.26. (carry out 6 steps.)
- (a) Find f^{1} (0.75) from the following table 7.

$$x$$
: 0.50 0.75 1.00 1.25 1.50 $f(x)$: 0.13 0.42 1.00 1.95 2.35

(b) Given $\frac{dy}{dx} = 1 + y^2$, with y(0) = 0, y(0.2) = 0.20274, y(0.4) = 0.4228 and y(0.6) = 0.6841. Compute y(0.8). Using Predictor-corrector method.